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Abstract 

In this paper, we introduce a framework for the inclusion of 
preference in image quality modeling. The dependence of 
quality on preferential attributes is expressed as a 
convolution of two functions, the preference distribution 
and the quality loss function. The preference distribution is 
a probability density function characterizing the preferred 
level of an attribute for a collection of observers and scenes. 
The quality loss function describes the decrease in quality as 
the attribute deviates from its observer- and scene-specific 
preference position. These two functions may be used to 
predict the value of market segmentation and customization. 

Introduction 

A variety of image attributes may contribute to the 
perception of overall quality. We can classify most of these 
attributes as being either artifactual or preferential in nature. 
Artifactual attributes are those that generally degrade image 
quality when they are detectable in an image; examples 
include graininess, redeye, and aliasing. In contrast, 
preferential attributes, such as those related to color and 
tone reproduction (contrast, color saturation, etc.), are 
always visible in an image, but have an optimal (preferred) 
position, which may vary as a function of observer and 
scene. 

While it is generally accepted that the changes in 
perceived image quality resulting from modifications of one 
or more artifactual attributes can be described in terms of an 
objective metric, (i.e., a mathematical function of one or 
more physical quantities that can be measured using a 
suitable test target), researchers may doubt whether such 
rigorous modeling can be done for preferential attributes. 
Preference is considered a matter of personal taste, 
aesthetics and experience, all of which are hard to quantify. 
Nonetheless, because color and tone reproduction are an 
integral part of image quality it is important to integrate 
artifactual and preferential attributes into an overall 
framework of image quality. 

In the next section, we summarize a mathematical 
treatment of preferential attributes, which is described in 
greater detail in Ref. 1. This theoretical description is 
followed by practical examples of the quantification of 
preference. 

Preferential Attributes in Image Quality
Modeling 

JNDs of Preference 
2As described previously, the concept of a just 

noticeable difference (JND) is central to our image quality 
framework. It allows us to describe the effect of all 
attributes on image quality in similar terms so that they can 
be rigorously combined into a prediction of overall quality 
in the presence of multiple attributes. 

To understand the concept of JNDs in the context of 
artifactual and preferential attributes, consider the following 
two examples of paired comparison experiments. In the first 
experiment, observers are presented with two images, which 
only differ in noisiness. The observers are instructed to 
choose which image they perceive to be of higher image 
quality. If the noisiness difference between the two samples 
is such that 75% of the observers “correctly” identify the 
less noisy sample as having higher quality, we define the 
stimulus difference to be a 50% JND of image quality. The 
50% designation is used because it may be inferred that 
50% of the observers actually detected the difference in the 
artifact (noise) level, and chose the less noisy sample, 
whereas the remaining 50% of observers did not detect any 
difference between the samples, and so had to guess. By 
chance, half the guesses would be correct, so a 75%:25% 
proportion results. 

The second paired comparison experiment is similar to 
the first except that the samples differ only in contrast, 
which is a preferential attribute, having an optimal value for 
a given scene and observer. Images of low contrast may 
appear flat and lifeless, whereas high-contrast images may 
seem harsh and may lack shadow and/or highlight detail. 
Despite the fact that the difference in contrast between the 
samples might be evident to every single observer, not all 
observers would identify the same sample as being of 
higher quality, because preference is partly a personal 
matter. (Similarly, if the same observer evaluated a series of 
paired images, they would not always prefer the same 
contrast level, because preference is also scene-dependent.) 
If 75% of the observers were to select the position of lower 
contrast as having higher quality, the outcome of the 
experiment would be the same as that of the first experiment 
involving the artifact of noise. It is natural to assign an 
equivalent stimulus difference (i.e., number of JNDs) to 
samples producing the same paired comparison outcome; 
hence, the lower contrast sample could be identified as 
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being one 50% JND higher in quality. Even though the 
word “noticeable” in the term “just noticeable difference” is 
not strictly appropriate in the context of preference, this 
terminology is retained for convenience. 

In summary, a JND of preference is defined as a 
stimulus difference producing the same outcome in a paired 
comparison experiment, as would a JND of an artifactual 
attribute. 

Preference Distributions and Quality Loss Functions 
The quality loss function for an artifactual attribute is 

the relationship between an objective metric value 
correlated with that artifact and the quality change 
associated with the presence of that artifact. The quality 
change is usually referenced to the state in which the artifact 
is not detectable, and so does not influence quality; 
consequently, quality changes are normally negative 
quantities, with zero JNDs of quality change corresponding 
to a subthreshold level of the artifact. We have fit the 
quality loss functions of many artifacts using the integrated 
hyperbolic increment function (IHIF), a simplified form of 
which is given in Eq. 1. 

∆Q(Ω) = Rr 
2 

⋅ ln
 
1 + ∆Ω∞ ⋅ (Ω − Ωr ) 

 − Ω − Ωr (1)
∆Ω∞  Rr  ∆Ω∞ 

Here ∆Q(Ω) is the quality change (negative) at an objective 
metric value of Ω, Ωr is the objective metric value at the 
reference position (threshold), Rr is the radius of curvature 
at the reference position, and ∆Ω∞ is the asymptotic 
objective metric change corresponding to one JND well 
above threshold.2 This form of the IHIF applies when Ω > 
Ωr; elsewhere ∆Q = 0. 

The quality loss at a given value of an objective metric 
is a function of both the scene and observer. For example, 
noise in an image with a large uniform area (such as blue 
sky) may be more visible and more detrimental to quality 
than in other types of scenes. A scene for which the quality 
depends more strongly on an attribute is said to be more 
susceptible to that attribute. Similarly, different observers 
may be more or less sensitive to particular attributes. 
Variations in scene susceptibility and observer sensitivity 
may be characterized by separately fitting the quality loss 
data from different subsets of scenes and observers. 

The impact of preferential attributes may also be 
partially described in terms of quality loss functions using 
Eq. (1), but the reference position is interpreted as the 
scene- and observer-specific optimum, rather than a 
threshold of detection. To fully characterize preference, a 
second function, the preference distribution, is needed. The 
preference distribution is a probability density function 
quantifying the relative frequency with which different 
values of an objective metric are preferred. For example, the 
preference distribution of contrast for a set of observers and 
scenes would probably show a peak at some intermediate 
value of contrast, which provided a good compromise 
position, and would tail off at lower and higher values of 
contrast. The preference distribution quantifies how likely it 

is that a given position be preferred, whereas the quality loss 
function quantifies how quality falls off away from the 
optimum position. Formally, the preference distribution of 
an artifactual attribute may be considered a delta function 
centered at some subthreshold position, because artifacts are 
generally preferred to be undetectable. 

If the preference distribution and the quality loss 
function are uncorrelated, then the rapidity of quality loss 
away from an optimum does not depend upon the position 
of the optimum. In this case, the mean quality change for a 
set of observers and scenes at a particular objective metric 
value is given by the convolution of the preference 
distribution, denoted hp(Ω), and the quality loss function 
∆Q(Ω). 

+∞ 
∆Q(Ω) = ∫ hp (Ω′) ⋅ ∆Q(Ω′ − Ω) ⋅ dΩ′  (2) 

−∞ 

We have generally found the assumption of a lack of 
correlation between the preference distribution and quality 
loss function to be justified, but a minor counter-example is 
provided by foliage reproduction, where observers 
preferring more saturated foliage were slightly less sensitive 
to deviations from their preferred positions. 

The implications of Eq. (2) may be easily understood 
by way of a simple analytical example. If the quality loss 
function is assumed to be parabolic, rather than being 
described by the more complicated Eq. (1), and the 
preference distribution is assumed to be Gaussian (normal), 
it may be shown that the convolution of Eq. (2) yields the 
simple result 

∆Q(Ω) = ∆Q1 ⋅ ((Ω − Ω p )
2 +σ 2 

p ) (3) 

where σp is the dispersion of the Gaussian, Ωp is the best 
compromise objective metric value, and ∆Q1 is the 
(negative) curvature of the quadratic quality loss function, 
which is equal to the quality change when the objective 
metric value is one unit different from the optimum 
position. 

From Eq. (3) it is seen that the mean quality of a given 
objective metric position is the sum of two terms, the first 
representing the quality loss arising from the displacement 
of the position from that of the optimal compromise, and the 
second representing the quality loss arising because even 
the best compromise position differs from the individual 
scene- and observer-dependent optima. The first term can 
be minimized by careful empirical optimization, leading to 
proper identification of the best compromise position. The 
second term can be reduced through customization, i.e., 
image processing that varies based upon measurable 
properties of the image and/or available information 
regarding the preferences of the observer (customer). 
Alternatively, market segmentation strategies can improve 
mean quality by providing multiple positions from which an 
informed choice may be made. The benefit of such an 
approach can be predicted from Eq. (2) by breaking the 
convolution down into separate integrals for each position 
provided. 
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Example of a Preference Analysis 

The Color Balance Experiment 
Ten scenes encoded in a balanced RGB scene color 

representation3 were employed in this experiment. Before 
rendering, RGB shifts were applied to the scenes such that 
the rendition of the 20% gray point represented a central 
composite design of CIE 1976 a*, b* shifts. Maximum 
a*and b* shifts of 8 units were selected for all on-axis 
design points, whereas shifts of 4 units in the a* and b* 
directions were employed for the diagonal points. The 
center point, which received no additional shifts, was 
included, providing nine levels in the experiment. The 
images were evaluated for overall quality by 22 observers 
of normal visual acuity and color vision. The softcopy 
quality ruler workstation employed in the evaluations has 

4been described previously. 

Prediction of the Mean JNDs of Quality 
Before preference distributions and quality loss 

functions can be obtained, it is necessary to develop a 
robust objective metric capable of predicting the data 
pooled over all judges and scenes. Because of the extensive 
averaging, the pooled data set has a high signal-to-noise 
ratio, facilitating the definition of an appropriate objective 
metric. 

A weighted difference of the rendered a*, b* values 
from the average preferred balance position of the 20% gray 
level, denoted by a0,, b0, is an intuitively plausible candidate 
for the objective metric, Ω: 

Ω = 2 
0 

2 
0 ) * () 1() * ( bb waa w a a −⋅ − + −⋅ (4) 

The weighting factor wa takes into consideration that 
equal color shifts in the a* and b* directions may have a 
different impact on quality. The objective metric, defined in 
Eq. (4), is inserted into the IHIF, Eq. (1), to fit the mean 
JNDs of quality for all nine levels. The parameters a0, b0, 
wa, Ωr, Rr, and ∆Ω∞ are co-optimized in a nonlinear 
regression procedure. 

Analysis of the Preference Distribution 
Our next goal is to analyze the 276 individual data sets 

for each observer and scene pair to obtain the preference 
distribution. The simplest way of determining this 
distribution would be to search for the maximum rating in 
each data set and to assign the corresponding a*, b* design 
position as preference. However, the actual preference may 
fall between any of the design levels, which are relatively 
widely spaced. Using nonlinear regression methods to 
obtain the free parameters in Eqs. (1) and (4) can help us to 
obtain a more accurate estimate of the preference position. 

The analysis can be greatly simplified if we assume that 
the objective metric for the mean and the individual data 
sets is only a function of the distance from the preferred 
balance position. This can be achieved by fixing the 
weighting factor wa at the position obtained for the mean 
data set. This is a reasonable assumption given that this 

weighting factor may be largely determined by human 
visual system properties, rather than characteristics of 
individual observers and/or scenes. In the case of color 
balance, shifts in the b* direction are generally less 
detrimental to quality than equal shifts in the a* direction, 
because yellow–blue color shifts are more representative of 
natural changes in daylight illumination. 

While many of the individual data sets are well 
described by Eqs. (1) and (4), some sets provide little 
indication of the observer’s preference. This might happen 
if an observer sees only small quality differences between 
the color renditions of a particular scene. In this case, 
several levels might receive the maximum rating for quality. 
Because these particular situations have little impact on the 
overall preference distribution, the data sets can either be 
weighted less or totally excluded from the analysis. In most 
of our studies less than 10% of the sets fell into this 
category. 

We found that the following criteria worked well in 
determining the consistency of individual data sets: (1) In 
some cases, an individual rating in the set was inconsistent 
with all other ratings. Removing the outlier improved the 
estimate of the preference position. (2) We calculated the 
correlation coefficient between the measured JNDs and the 
predictions from Eqs. (1) and (4). Data sets with correlation 
coefficients below a certain threshold were excluded. (3) In 
some situations, the correlation fell above the threshold, but 
the regressed Ω parameter in the IHIF was unusually large.r 

This corresponds to a high threshold in the objective metric 
below, which no quality degradations are observed, 
indicating larger uncertainties about the actual preference. 
Consequently, data sets with higher thresholds were 
weighted less (using a factor of by 1/(1+Ωr)) in computing 
the preference distributions. 
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Figure 1. Preference distribution for color balance shown as 
contours in a CIELAB a* vs. b* diagram. 
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The preferred a*, b* values a0,  b0 were recorded for 
each scene-observer combination together with the 
regression parameters for the IHIF, Eq. (1). The frequency 
distribution of preferences was obtained by sorting the 
preference points into two-dimensional bins with a bin 
width of 2 a*, b* units and incrementing the count in the 
appropriate bin by 1/(1+Ωr) (see item 3 above). The opti­
mum bin size depends on the width of the preference 
distribution and the number of individual entries available 
from the experiment. Figure 1 shows the preference distri­
bution obtained from the color balance experiment as a 
contour plot in the a*, b* plane. The contours represent the 
normalized weighted frequency distribution. The preference 
distribution falls off more rapidly in the red-green (a*) di­
rection, and is asymmetric in the blue-yellow direction with 
a higher probability of preferences in the blue direction. 

Analysis of the Quality Loss Function 
An initial estimate of the quality loss function can be 

made by aligning the optima of the individual quality loss 
functions for all scene-observer combinations. This can be 
achieved by setting the parameters a0, b0 in Eq. (4) to zero. 
The a*, b* values in the objective metric, Eq. (4), can now 
be interpreted as differences from the optimum color bal­
ance, which corresponds to zero JNDs of quality degrada­
tion according to Eqs. (1) and (4). We can use the stored 
regression parameters for each data set to calculate the 
individual quality loss functions. Averaging produces an 
estimate of the overall quality loss function, which can 
again be modeled using Eq. (1). The dotted line in Fig. 2 
shows the results of this analysis. An average quality loss 
function, which provides an even better prediction of the 
mean JNDs, pooled over scene and judge, is produced by 
minimizing the sum of square errors between measured and 
predicted mean JNDs, using Eqs. (1) and (2) in a nonlinear 
regression routine. The preference distribution shown in 
Fig. 1 corresponds to the quantity hp in Eq. (2). The dashed 
line in Fig. 2 shows the quality loss function (∆Q in Eq. (2), 
modeled using the IHIF, Eq. (1)) determined by this 
method. 

The quality gain associated with customizing the color 
balance for each scene and observer, is likewise obtained in 
the nonlinear regression routine. This quantity corresponds 
to the term ∆Q1⋅σp

2 
in Eq. (3). According to this study, we 

would gain 3 JNDs of quality improvement if the color 
balance was customized for each observer and scene, as 
opposed to providing an optimum average balance. 

A comparison of the quality loss function with the IHIF 
obtained for the mean JNDs, represented by the solid line in 
Fig. 2, can help us determine if the average response of the 
observers is dominated by the quality loss function or by the 
preference distribution. In most cases, the convolution inte­
gral in Eq. (2) will lead to a less rapid fall-off of the mean 
compared with the quality loss function. However, if the 
quality loss function is a parabolic, both functions are 
identical! In the case of color balance, both functions shape 
the curve for the mean JNDs as a function of the objective 
metric. 
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Figure 2. Quality loss functions, computed four ways. (1) 
Measured data for the mean observer and scene. (2) Regression 
for mean observer and scene. (3) Average quality loss function 
from the regression of individual data sets, Eqs. (1) and (4). (4) 
Quality loss function corresponding to the preference distribution 
in Fig. 1, Eqs. (1) and (2). 

Preference Distributions and Quality Loss for Key 
Colors 

The interplay of preference and quality loss gives us 
powerful insights into the complexities of our perception of 
color quality. This becomes evident if the results of the 
color balance study are compared with results of previous 

3memory color studies. 
Figure 3 summarizes the results regarding preference 

distributions and quality loss functions for neutral colors 
(color balance) and for the memory colors skin, foliage, and 
blue sky in a CIELAB plot. The dotted lines refer to the 
90% preference contours, corresponding to a 90% fall-off of 
the preference distribution compared with its maximum 
value. The solid lines represent the quality loss contours, 
corresponding to five JNDs of quality degradation 
compared with the optimum. The positions of the contours 
correspond to the preferred reproduction of the scene color 
that most typically represents each color. 

Depending on the color of interest, quality loss 
functions and preference distributions can have distinctly 
different shapes. This means that equal color shifts in an 
approximately perceptually uniform color space can have a 
very different impact on color quality, depending on the 
color under consideration and the direction of the shift. 

It is interesting that the 90% preference contours and –5 
JND quality contours have very similar sizes and almost 
overlap in some cases, e.g., foliage. This suggests that, if 
expressed in terms of quality fall-off from an overall 
optimum for each color, the extent of the preference 
distributions remains almost invariant, regardless of the 
color under consideration. For example, quality degrades 
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rapidly if the skin tone reproduction moves away from the 
optimum, and the preference distribution is correspondingly 
narrow. In contrast, chroma changes in the reproduction of 
blue sky have a small impact on quality, and the preference 
distribution is relatively wide in this direction. 
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Figure 3. Preference distributions (dotted lines) and quality loss 
functions (solid lines) shown as contours in a CIELAB a* vs b* 
plot. The preference contour corresponds to 10% of the maximum 
value of the preference distribution. The quality loss contour 
indicates a 5 JND quality degradation compared with the 
optimum. Reprinted from Ref. 4 by courtesy of Marcel Dekker, Inc. 

Conclusion 

Artifactual and preferential image quality attributes have 
been integrated into a framework for the prediction of 
overall quality based on the concept of just noticeable 
differences (JNDs). A JND of preference is defined as a 
stimulus difference producing the same outcome in a paired 
comparison experiment, as would a JND of an artifactual 
attribute. 

The common element in modeling artifactual and 
preferential attributes is the quality loss function, Eq. (1), 
which is the relationship between an objective metric value 
correlated with the attribute and the associated quality 
change. In the case of artifacts, the quality change is usually 
referenced to the state in which the artifact is not detectable, 

and so does not influence quality. For preferential attributes, 
the quality loss function describes the decrease in quality as 
the attribute deviates from its observer- and scene-specific 
preference position and is also modeled using Eq. (1). 

The parameters characterizing the preferred value for a 
color and tone attribute are part of the objective metric, 
which is often formulated as a weighted CIELAB color 
difference from the optimum (e.g., Eq. (4)). 

The dependence of quality on preferential attributes 
may be expressed as a convolution of two functions, the 
preference distribution and the quality loss function. The 
preference distribution is a probability density function 
characterizing the preferred level of an attribute for a 
collection of observers and scenes. 

For several key colors, we demonstrated that their 
preference distributions and quality loss functions have 
distinctly different shapes. However, the size of the 90% 
preference distribution seemed to correspond to an almost 
constant quality loss of approximately 5 JND from the 
average optimum position, regardless of the color under 
consideration and the direction of the shift. 

References 

1. Brian W. Keelan, Handbook of Image Quality: 
Characterization and Prediction, Marcel Dekker, Inc., New 
York, Ch. 4 (2002). 

2. Brian W. Keelan, “Characterization and Prediction of Image 
Quality”, Proc. PICS 2000, pp. 197–203 (2000). 

3. Kevin E. Spaulding, Geoffrey J. Woolfe, and Edward J. 
Giorgianni, “Reference Input/Output Medium Metric RGB 
Color Encodings (RIMM/ROMM RGB)”, Proc. PICS 2000, 
pp. 155–163 (2000). 

4. 	 Karin Töpfer, Robert E. Cookingham, “Quantitative Aspects 
of Color Rendering for Memory Colors”, Proc. PICS 2000, 
pp. 94–98 (2000). 

Biography 

Karin Töpfer received her Masters degree in Physics from 
Dresden University of Technology in 1983 and a Ph.D. in 
Photophysics from Dresden University of Technology in 
1985. Since 1993, she has worked at Eastman Kodak 
Company, first in the U.K. and later in Rochester, NY. In 
recent years, her work has primarily focused on image 
quality modeling and psychophysics, including color 
quality. She is a member of the IS&T and a Fellow of the 
Royal Photographic Society. 

64 


	60



